
J Glob Optim (2007) 39:221–234
DOI 10.1007/s10898-007-9134-4

O R I G I NA L PA P E R

An improved inexact Newton method

Haibin Zhang · Naiyang Deng

Received: 3 May 2006 / Accepted: 2 January 2007 / Published online: 30 January 2007
© Springer Science+Business Media B.V. 2007

Abstract For unconstrained optimization, an inexact Newton algorithm is proposed
recently, in which the preconditioned conjugate gradient method is applied to solve
the Newton equations. In this paper, we improve this algorithm by efficiently using
automatic differentiation and establish a new inexact Newton algorithm. Based on
the efficiency coefficient defined by Brent, a theoretical efficiency ratio of the new
algorithm to the old algorithm is introduced. It has been shown that this ratio is greater
than 1, which implies that the new algorithm is always more efficient than the old one.
Furthermore, this improvement is significant at least for some cases. This theoretical
conclusion is supported by numerical experiments.

Keywords Cholesky factorization · Unconstrained optimization · Newton equation ·
Automatic differentiation · Preconditioned conjugate gradient method

Mathematics subject classification 90C30 · 65K05

1 Introduction

Consider unconstrained optimization problem

min f (x), x ∈ Rn. (1.1)

It is well known that, under proper assumptions, Newton’s method is quadrati-
cally convergent. But its efficiency is reduced by its expensive computational cost,
especially, for the middle-large scale problems. A number of modifications have been
proposed to improve the original Newton’s method. In recent years, iterative type

H. Zhang (B)
College of Applied Science, Beijing University of Technology, Beijing 100022, China
e-mail: zhanghaibin@bjut.edu.cn

N. Deng
College of Science, China Agricultural University, Beijing 100083, China

222 J Glob Optim (2007) 39:221–234

Newton-like methods have received much attention. Steihaug and Toint proposed
Newton-CG like algorithms (see [7] and [8]), in which the Newton equation is solved
by CG method approximately. An inexact Newton algorithm (Algorithm 1) is estab-
lished in Ref. [4]. It is shown that, for the problems where the computation cost to
evaluate the gradient and the Hessian matrices is small, its average computation cost
of every iteration is much less than that of Newton’s method. However, the improve-
ment is just a little when the computation cost is large.

This paper improves Newton’s method further by modifying Algorithm 1 above.
The key point is to evaluate the gradient and the Hessian more efficiently. For this
evaluation, it is well known that, there are four kinds of approaches. The first one
is to make the manual development of code for evaluating analytic derivatives of a
function. It is tedious and error-prone activity, although it is likely to result in the most
efficient code.

The second approach is to estimate the derivatives using divided differences, such
estimates are prone to truncation error when the differencing intervals are numeri-
cally large, and to round off error when they are small. In addition, if the run-time
cost to evaluate a gradient ∇f (x) by divided differences is denoted as QDD

g , then

QDD
g = (n + 1)Qf ,

where Qf denote the run-time cost to evaluate f (x), n is the dimension of x =
(x1, x2, . . . , xn)T ∈ Rn. Therefore, the run-time requirements of a divided difference
approach are often unacceptably high, particularly for problems when the dimension
n is a large number (thousands), see [1].

The third approach is symbolic differentiation. It can be used to differentiate indi-
vidual functions by symbol manipulation programs. But its implementation is almost
impossible for the middle and large scale problems and for problems involving condi-
tional statements, loops and subroutine calls. Moreover, the run-time cost by symbolic
differentiation is also very large; in general, if the cost to evaluate a gradient ∇f (x) is
expressed by QSD

g , then

QSD
g ≈ nQf ,

where Qf is the cost to evaluate f (x).
At last, the fourth approach is Automatic Differentiation (AD) techniques. It cal-

culates derivatives by transforming the function source codes into the codes that
calculate numerical values for derivatives of the underlying function with about the
same accuracy and efficiency as the function values themselves (see [1,3,5]).

In this paper, applying automatic differentiation, we improve the inexact New-
ton algorithm (Algorithm 1) in Ref. [4] and establish a new Newton-PCG algorithm
(Algorithm 2), where the Hessian-vector can be evaluated at the several times (inde-
pendent of n) cost of the underling functions without evaluating the Hessian matrices.
The results by theoretic analysis and numerical experiments in this paper show that
Algorithm 2 is more efficient than Algorithm 1.

The rest of the paper is organized as follows: In Sect. 2, Algorithm 2 is established
while Algorithm 1 is recalled. Efficiency analysis is discussed in Sect. 3 and numerical
examples are described in Sect. 4. At last, some conclusions are given in Sect. 5.

J Glob Optim (2007) 39:221–234 223

2 The improved inexact Newton algorithm

Suppose that problem (1.1) has a solution x∗ and satisfies the following assumptions.
Assumption (A1) ∇2f (x) is Lipschitz continuous with the constant L in a neigh-

borhood of the solution x∗ to (1.1);
Assumption (A2) ∇2f (x∗) is positive definite.
Let us first describe AD algorithms.

2.1 Automatic differentiation (AD)

Automatic Differentiation can be used to evaluate the gradient, the directional gra-
dient and the second-order directional gradient of the function see e.g., [5]. The
following algorithm, called Algorithm ADR, is used to evaluate the gradient �f (x)

by the reverse mode of AD.
Algorithm ADR
Step 0 Set x ∈ Rn.
Step 1 Evaluate f (x) using General Evaluation Procedure.
Step 2 Evaluate �f (x) using Reverse Propagation of Gradients. ��
In addition, Table 3.2 in Ref. [5], Ch.3, Sect. 3.1, gives an algorithm which effi-

ciently evaluates a gradient �f and m Hessian-vector �2f · ẋi with i = 1, . . . , m, where
ẋi ∈ Rn and m is any positive integer. This algorithm exploits the forward mode of AD
after the gradient is calculated. It can be described briefly by the following Algorithm
ADF(m) with a parameter m.

Algorithm ADF(m)
Step 0 Set x, ẋ1, . . . , ẋm ∈ Rn.
Step 1 Calculate �f (x) by Algorithm ADR.
Step 2 Evaluate �2f (x) · ẋi, i = 1, . . . , m, using Forward Propagation of Tangents.

��
Let QADR be the computation cost to evaluate a gradient �f by Algorithm ADR.

Then, by (3.24) in Ref. [5], Ch.3, Sect. 3.4, we have

QADR ≤ 4Qf , (2.1)

where Qf is the computation cost to evaluate a function value f (x). Furthermore, let
QADF(m) be the computation cost involved in Algorithm ADF, by Griewank [5], we
have

QADF(m) ≤ (4 + 6m)Qf . (2.2)

It should be noted that

(1) By Algorithm ADF(1), the Hessian-vector can be evaluated at about ten times
computational cost of the function without evaluating the Hessian matrix.

(2) The evaluation of the Hessian matrix �2f (x) can be completed by using Algorithm
ADF(n) with ẋi = ei, i = 1, . . . , n, where ei is the ith Cartensian basic vector in
Rn. The computational cost is O(n) times cost of the function, not O(n2).

Above two points can be used efficiently to improve Algorithm 1 in Ref. [4].

224 J Glob Optim (2007) 39:221–234

2.2 Algorithm 1 (The CF-PCG Algorithm in Ref. [4])

Algorithm 1 includes a sub-algorithm — Algorithm PCG1(C, A, b, l, e) (see Algorithm
PCG(C, A, b, l, e) in Ref. [4]), which was used to solve the linear system

As = b, (2.3)

where C is preconditioner, l is maximum number of subiterations, and e is a scalar
used in the termination criterion (2.4). Now we cite the sub-algorithm and algorithm
as follows.

Algorithm PCG1(C, A, b, l, e)
Step 0 Initial data: set the initial point s0 = 0, r0 = −b. Set i = 1.
Step 1 Termination test: if

‖ri−1‖ ≤ ‖b‖1+e or i − 1 = l, (2.4)

go to Step 4.
Step 2 Subiteration:

(a) set z = Cri−1, ti−1 = zTri−1;
(b) if i = 1, then q = z; else β = ti−1/ti−2 and q = z + βq;
(c) set si = si−1 + λq, where λ = ti−1/qTw and w = Aq;
(d) set ri = ri−1 + λw.

Step 3 Set i = i + 1 and go to Step 1.
Step 4 Set s̃ = si−1.
(1) Find the optimal solution σ ∗ to the one-dimensional optimization problem

max v1(σ) = ln(2 + σ)

(1 + p(σ))QHg + QD + σQI
, (2.5)

s.t. σ is a nonnegative integer, (2.6)

where

p(σ) =
 ln(2 + σ)

ln 2
− 1�,

is the smallest integer not smaller than ln(2+σ)
ln 2 − 1. The computation costs QHg, QD,

and QI are defined as follows.
QHg = QH + Qg;
QH = the computation cost to evaluate a Hessian ∇2f ;
Qg = the computation cost to evaluate a gradient ∇f ;

QD = 1
6

n3 + 3
2

n2 − 2
3

n, (2.7)

is the computation cost in a CF Step;

QI = 2n2 + 6n + 2, (2.8)

is an upper bound of the computation cost in one subiteration of a PCG Step.
(2) p = p∗ = p(σ ∗).
(3) if σ ∗ = 1, l1 = l∗1 = 1; if σ ∗ ≥ 2,

lm = l∗m = 2m, m = 1, . . . , p∗ − 1;
σ ∗ − 2p∗ + 2, m = p∗.

J Glob Optim (2007) 39:221–234 225

Algorithm 1
Step 0 Initial data: set the initial point x0 ∈ Rn. Set k = 0.
Step 1 Termination test: if ∇f (xk) = 0, stop.
Step 2 Switch test: if k = (p + 1)k0 for some positive integer k0, go to Step 3;

otherwise go to Step 4.
Step 3 CF Step: set

Bk = ∇2f (xk). (2.9)

Find the solution sk to the Newton equation

∇2f (xk)s = −∇f (xk) (2.10)

by Cholesky factorization ∇2f (xk) = LkDkLT
k . Set m = 0, and go to Step 5.

Step 4 PCG Step: set Bk = Bk−1, m = m + 1. Find s̃ by Algorithm PCG1((Bk)−1,
∇2f (xk), −∇f (xk), lm, lm/2m). Set sk = s̃.

Step 5 Update the iteration: set xk+1 = xk + sk. Set k = k + 1 and go to Step 1.

2.3 Algorithm 2

Our improved algorithm also includes a sub-algorithm — Algorithm PCG(M, �f (x),
l, e), which is used to solve the Newton equation

�2 f (x)s = − � f (x), (2.11)

where M is the preconditioner, l is the maximum number of subiterations and e is a
scalar.

Algorithm PCG(M, �f (x), l, e)
Step 0 Initial Data. Set s0 = 0, r0 = − � f (x), i = 1.
Step 1 Termination Test. If

‖ri−1‖ ≤ ‖ � f (x)‖1+e or i − 1 = l, (2.12)

then terminate the iteration by taking s̄ = si−1.
Step 2 Subiteration:

(a) solve the equation Mz = ri−1 for z, set ti−1 = zTri−1;
(b) if i = 1, then β = 0 and q = z; else, β = ti−1/ti−2, q = z + βq and evaluate

w = �2f (x) · q (2.13)

by Algorithm ADF(1) with ẋ1 = q.
(c) set si = si−1 + αq, where α = ti−1/qTw and w = �2f (x)q;
(d) set ri = ri−1 + αw.

Step 3 Set i = i + 1, and go to Step 1.
Now we are in a position to describe our improved algorithm — Algorithm 2.

Based on Algorithm ADR, Algorithm ADF, and Algorithm PCG(·), The main steps
of Algorithm 2 are as follows: an exact Newton step with Cholesky factorization
(CF step) and p inexact Newton steps with preconditioned conjugate gradient sub-
iterations (PCG steps), in which the parameter σ ∗ is the solution to the following
optimization problem

226 J Glob Optim (2007) 39:221–234

max v2(n, Qf , σ) = ln(2 + σ)

(6n + 4 + 4p + 6σ)Qf + QD + σQ−
I

, (2.14)

s.t. σ is a nonnegative integer, (2.15)

p = p̄(σ) =
 ln(2 + σ)

ln 2
− 1�, (2.16)

where
·� is the smallest integer not smaller than ·, Qf is the computation cost to
compute a function value f , QD is the computation cost to solve the Newton equation
by CF and Q−

I is the computation cost to execute one PCG subiteration, where

QD = 1
6

n3 + 3
2

n2 − 2
3

n, Q−
I = n2 + 6n + 2, (2.17)

Algorithm 2 (Improved Inexact Newton Algorithm)
Step 0 Initial Data. Set the initial point x0 ∈ Rn. If σ ∗ = 1, set p = 1 and l1 = 1.

If σ ∗ ≥ 2, set

lm = 2m, m = 1, . . . , p − 1;
σ ∗ − 2p + 2, m = p,

where σ ∗ is the solution to the optimization problem (2.14)–(2.16) and p = p̄(σ ∗)
is defined by (2.16), and set k = 0.

Step 1 Evaluate �f (xk) by Algorithm ADR. If �f (xk) = 0, then terminate the
iteration by taking x∗ = xk.

Step 2 Switch Test. If k can be divided by p + 1 with no remainder, go to Step 3;
otherwise, go to Step 4.

Step 3 CF Step. Evaluate �2f (xk) by using Algorithm ADF(n) with setting ẋi = ei,
i = 1, . . . , n, where ei is the ith Cartensian basic vector in Rn. Set

Bk = �2f (xk).

Find the solution sk to Newton equation (2.11) by CF �2f (xk) = LkDkLT
k . Set m = 0

and go to Step 5.
Step 4 PCG Step. Set Bk = Bk−1, m = m + 1, and

M = Bk

Find the approximate solution sk to the Newton equation (2.11) by the Algorithm
PCG (M, �f (xk), lm, 1 + lm

2m).
Step 5 Update Solution Estimation. Set xk+1 = xk + sk. Set k = k + 1, and go to

Step 1.

3 The efficiency analysis of algorithm 2

In this section, we analyze the efficiency of Algorithm 2. Let’s first consider its com-
putational cost based on its structure: one CF step is followed by p PCG steps.

Solving the Newton equation by CF. Denote the corresponding arithmetic compu-
tation cost as QD.

Thus, by (2.2), the total computation cost of one CF step with an extra gradient
evaluation is

QADF(n) + QD ≤ (4 + 6n)Qf + QD. (3.1)

J Glob Optim (2007) 39:221–234 227

For the PCG steps, denote Q−
I = Q−

I (n) as the arithmetic computation cost in one
PCG subiteration. The total computation cost of p PCG steps after a CF step with p
extra gradient evaluations has the upper bound

p∑

t=1

[QADF(lt) + (lt)Q
−
I] ≤ 4p + 6

(p∑

t=1

lt

)
Qf +

(p∑

t=1

lt

)
Q−

I , (3.2)

where lt is the tth PCG subiteration number.
Combining (3.1) and (3.2), the total computation cost in the p + 1 steps which are

a CF step and p PCG steps has the upper bound

(6n + 4 + 4p + 6σ)Qf + QD + σQ−
I , (3.3)

where

σ =
p∑

t=1

lt.

Now, we analyze and compare the efficiency of Algorithm 2 and Algorithm 1. Our
analysis is based on the efficiency coefficient given by Brent [2].

Definition 3.1 Efficiency coefficient: suppose that the sequence {x0, x1, · · · , xk, · · · }
is generated by an algorithm. If {xk} converges to the solution x∗ to (1.1), then the
efficiency coefficient � of the algorithm is defined by

� = lim inf
k→∞

ln(− ln ‖xk − x∗‖)
∑k

i=1 Q[xi−1, xi] , (3.4)

where Q[xi−1, xi] is the computation cost required to compute xi from xi−1.

Theorem 3.1 If the initial point x0 is close enough to the solution x∗, Algorithm 2 is
well-defined.

Proof To prove Algorithm 2 to be well-defined, we only need to show the existence
of the global solution σ ∗ to (2.14)–(2.16). In fact, it is easy to see that

lim
σ→∞ v2(σ) = 0

and

v2(0) = ln 2
(6n + 4)Qf + QD

> 0,

we conclude that the series {v2(σ), σ = 0, 1, 2, . . .} has a finite maximum point σ ∗. ��
The efficiency coefficient of new algorithm is estimated by the following theorem.

Theorem 3.2 The efficiency coefficient �2 of Algorithm 2 satisfies

�2 ≥ v∗
2

def= v2(σ
∗), (3.5)

where v2(·) is defined by (2.14), and σ ∗ is the global solution to (2.14)–(2.16).

The proof of the theorem is the same as that of Theorem 4.2 in Ref. [4]. ��

228 J Glob Optim (2007) 39:221–234

Theorem 3.3 The efficiency coefficient �1 of Algorithm 1 satisfies

�1 ≥ v∗
1

def= v1(σ
∗), (3.6)

where v1(·) is defined by (2.5), and σ ∗ is the global solution to (2.5)–(2.6).

This is Theorem 4.2 in Ref. [4]. ��
For comparison, the efficiency of Newton’s method is given in the following theo-

rem, which can be considered as a special case of either Algorithm 1 or Algorithm 2
with σ = 0.

Theorem 3.4 The efficiency coefficient �N of Newton’s method satisfies

�N ≥ vN
def= ln 2

QHg + QD
= ln 2

(4 + 6n)Qf + QD
. (3.7)

Proof See Theorem 4.4 in Ref. [4]. ��
Now let us compare the lower bound of the efficiency coefficient of Algorithm 2,

v∗
2, with that of Algorithm 1, v∗

1. We need the following lemma.

Lemma 3.5 Suppose that σ ∗
1 and σ ∗

2 are, respectively, the global solution to (2.5)–(2.6)
and (2.14)–(2.16). When n ≥ 20, we have

σ ∗
1 ≤ σ ∗

2 (3.8)

and

σ1 − 1 ≤ σ ∗
1 ≤ σ1 + 1, σ2 − 1 ≤ σ ∗

2 ≤ σ2 + 1, (3.9)

where σ1 and σ2 are the solution of the unconstrained problems, respectively, with the
objective function v1(σ) in (2.5) and v2(σ) in (2.14) with continuous variable σ , and σ1
and σ2 satisfy

(2 + σ1) ln(2 + σ1) − σ1 = QD

QI
(3.10)

and

(2 + σ2) ln(2 + σ2) − σ2 = QD + 6nQf

Q−
I + 6Qf

. (3.11)

Proof Consider maximizing the objective function v1(σ) in (2.5) and v2(σ) in (2.14)
with continuous variable σ . Let v′

1(σ) = 0 and v′
2(σ) = 0, we can get (3.10) and (3.11).

Obviously, the conclusion (3.9) is right. Because the function (2 + σ) ln(2 + σ) − σ is
strictly increasing with σ ≥ 0, and

QD

QI
<

QD + 6nQf

Q−
I + 6Qf

,

by (3.10) and (3.11), we have σ1 ≤ σ2, thus the conclusion (3.8) is proved. ��
Note that v∗

1, v∗
2 and vN (are, respectively, defined by (3.6), (3.5), and (3.7)) are the

functions of n and Qf . For comparison, we introduce the following notations:

R1(n, Qf)
def= v∗

1

vN
, R2(n, Qf)

def= v∗
2

vN
. (3.12)

J Glob Optim (2007) 39:221–234 229

Theorem 3.6 For fixed n ≥ 20, we have the following conclusions:

(1) R1(n, Qf) is decreasing with Qf , and R2(n, Qf) is increasing with Qf .
(2) R1(n, Qf) ≤ R1(n, 0) < R2(n, 0) ≤ R2(n, Qf)

(3) When n → ∞, R1(n, 0) ∼ ln n/ ln 2.
(4) When n is fixed,

lim
Qf →∞ R1(n, Qf) = 1. (3.13)

Proof Consider R1(n, Qf), R2(n, Qf) as the functions with continuous variable Qf .
From the Eq. 3.10, we obtain ∂σ1/∂Qf = 0. By

R1(n, Qf) = ln(2 + σ1)[(6n + 4)Qf + QD]
[(p(σ1) + 1)(6n + 4)Qf + QD + σ1QI] ln 2

and

p(σ1) + 1 = ln(2 + σ1)/ ln 2,

we can get

∂R1

∂Qf
= ln(2 + σ1)

ln 2
· (6n + 4)(σ1QI − pQD)

[(p(σ1) + 1)(6n + 4)Qf + QD + σ1QI]2 .

When n ≥ 20, σ1 ≥ 1, p ≥ 1. Let y1(σ) = ln(2 + σ) − ln 2 − σ/(2 + σ). By y′
1(σ) > 0

and y1(0) = 0, we can get when σ > 0, y1(σ) = ln(2 + σ) − ln 2 − σ/(2 + σ) > 0

p = ln(2 + σ1)

ln 2
− 1 >

σ1

(2 + σ1) ln 2
,

σ1

p
< (2 + σ1) ln 2,

(p + 1)σ1

p
< (2 + σ1)(p + 1) ln 2 = (2 + σ1) ln(2 + σ1).

So,

σ1

p
< (2 + σ1) ln(2 + σ1) − σ1 = QD

QI
.

That is, σ1QI − pQD < 0, therefore,

∂R1

∂Qf
< 0. (3.14)

Denote A = Q−
I + 6Qf and B = QD + 6nQf . By (3.11),

(2 + σ2) ln(2 + σ2) − σ2 = B/A

and

p̄(σ2) + 1 = ln(2 + σ2)

ln 2
,

230 J Glob Optim (2007) 39:221–234

we have

R2(n, Qf) = 4Qf + B

4Qf + A(2 + σ2) ln 2
.

And by

∂A
∂Qf

= 6,
∂B
∂Qf

= 6n

and
∂σ2

∂Qf
= 6(nA − B)

A2 ln(2 + σ2)
,

we obtain

∂R2
∂Qf

= (6n + 4)[4Qf + A(2 + σ2) ln 2] − (4Qf + B)[4 + 6(2 + σ2) ln 2 + A∂σ2/∂Qf ln 2]
[4Qf + A(2 + σ2) ln 2]2

= (6n + 4)[4Qf ln(2 + σ2) + (Aσ2 + B) ln 2] − (4Qf + B)[4 ln(2 + σ2) + 6(n + σ2) ln 2]
[4Qf + A(2 + σ2) ln 2]2 ln(2 + σ3)

= (6n + 4)σ2Q−
I ln 2 + 4QD ln 2 − [4 ln(2 + σ2) + 6σ2 ln 2]QD

[4Qf + A(2 + σ2) ln 2]2 ln(2 + σ2)

=
[(5 ln 2)n3 + (31 ln 2)n2 + (40 ln 2)n + 8 ln 2]σ2 −

[
2
3 n3 + 6n2 − 8

3 n
]

ln(2 + σ2)

[4Qf + A(2 + σ2) ln 2]2 ln(2 + σ3)

> 0.

Therefore,

∂R2

∂Qf
> 0. (3.15)

By (3.14) and (3.15), the conclusion (1) is obtained.
Now, let’s prove the conclusion (2). In fact, by (1) and Qf ≥ 0, the following

inequalities are right:

R1(n, Qf) ≤ R1(n, 0),

R2(n, 0) ≤ R2(n, Qf).

In addition, by (3.8),

R1(n, 0) = QD ln(2 + σ ∗
1)

[QD + σ ∗
1 QI] ln 2

<
QD ln(2 + σ ∗

2)

[QD + σ ∗
2 Q−

I] ln 2
= R2(n, 0),

the conclusion (2) is obtained.
The conclusion (3) is actually the conclusion of Theorem 4.5 in Ref. [4].
Finally, let’s proof the conclusion (4), when n is fixed,

lim
Qf →∞ QD/((6n + 4)Qf) = 0

and by (3.10) and (3.9),

lim
Qf →∞(QD + σ ∗

1 QI)/((6n + 4)Qf) = 0.

J Glob Optim (2007) 39:221–234 231

And by

R1(n, Qf) = v∗
1

vN
= ln(2 + σ ∗

1)[(6n + 4)Qf + QD]
[(p(σ ∗

1) + 1)(6n + 4)Qf + QD + σ ∗
1 QI] ln 2

and

p(σ ∗
1) + 1 = ln(2 + σ ∗

1)/ ln 2,

we have

lim
Qf →∞ R1(n, Qf)

= lim
Qf →∞

ln(2 + σ ∗
1)[1 + QD/((6n + 4)Qf)]

[(p(σ ∗
1) + 1) + (QD + σ ∗

1 QI)/((6n + 4)Qf)] ln 2

= ln(2 + σ ∗
1)[1 + 0]

[(p(σ ∗
1) + 1) + 0] ln 2

= 1.

To compare Algorithm 2 and Algorithm 1, we need the following definition.

Definition 3.2 The efficiency ratio r of Algorithm 2 to Algorithm 1 is defined as

r = r(n, Qf) = v∗
2

v∗
1

, (3.16)

where v∗
1, v∗

2 are, respectively, defined in (3.6) and (3.5), and r = r(n, Qf) is the function
of n and Qf . ��
In fact, by (3.12), we have

r = v∗
2

v∗
1

= v∗
2/vN

v∗
1/vN

= R2(n, Qf)

R1(n, Qf)
.

Therefore, the efficiency ratio r of Algorithm 2 over Algorithm 1 is just the improve-
ment ratio of Algorithm 2 and Algorithm 1 over Newton’s method.

Theorem 3.7 Comparing the efficiency of Algorithm 2 and that of Algorithm 1, we
have

(1) when n ≥ 20, r = r(n, Qf) > 1.
(2) r = r(n, Qf) is increasing with respect to Qf .

��
Proof By (3.12) and the conclusion (2) in Theorem 3.6, the conclusion (1) is obtained.

By (3.12) and the conclusion (1) in Theorem 3.6, we get (2).

Remark 3.8 Theorem 3.7 shows that Algorithm 2 is more efficient than Algorithm
1, and their efficiency ratio is increasing with respect to the complexity of the tar-
get functions. The theoretical value of the efficiency ratio r(n, Qf) of Algorithm 2 to
Algorithm 1 is given in Table 1 when n = 100, 200, . . . , 1, 000, and Qf = n, 3n, 10n, n2.
The table shows that Algorithm 2 is theoretically more efficient than Algorithm 1 in
evidence. ��

232 J Glob Optim (2007) 39:221–234

Table 1 The theoretical value of the efficiency ratio r(n, Qf) of Algorithm 2 to Algorithm 1

n Qf = n Qf = 3n Qf = 10n Qf = n2

100 1.6374 2.0957 2.7762 3.6129
200 1.5630 1.9915 2.7977 4.3236
300 1.4795 1.8678 2.6924 4.7511
400 1.4334 1.7832 2.5895 5.0672
500 1.4095 1.7261 2.5006 5.3155
600 1.3909 1.6851 2.4242 5.5183
700 1.3627 1.6318 2.3405 5.6891
800 1.3405 1.5905 2.2690 5.8404
900 1.3237 1.5578 2.2074 5.9745
1,000 1.3113 1.5315 2.1537 6.0950

4 Numerical experiments

In this section, we test our algorithm by all of the numerical examples in Ref. [4]: the
Extended Rosenbrock function, the Extended Powell singular function, Penalty func-
tion 1, Penalty function 2 and Variably dimensioned function. These test problems
are quoted from the unconstrained optimization problems in Ref. [6].

Algorithm is executed by C++ routines with double precision. The initial points
of these problems are standard start points. Notice that these algorithms are local
algorithm and our theoretical results are valid in a neighborhood of x∗, where

‖∇f (x)‖ < 1.

However, the standard starting points may be rather far away from x∗. So, to pre-
vent the earlier mature, in our code the termination criterion (2.12) in PCG step is
modified as

‖ri−1‖ ≤ min{‖ � f (x)‖1+e, 0.9}.
In addition, the condition

‖∇f (x)‖ ≤ 10−6

is used for the termination test.
We test the five problems with different dimensions n = 100, 200, . . . , 1, 000. The

numerical results for the top three problems are listed in Tables 2–4 and the results
for the fifth one in Table 5. Note that, there is no the results corresponding to the
fourth problem because Algorithm 1 and/or Algorithm 2 are not convergent for many
values of n, and the lack of some rows in Table 5 is because of the same reason.

The main value we are interested in is the ratio

rprac = The CPU time by Algorithm 1
The CPU time by Algorithm 2

(4.1)

which shows the practical improvement of Algorithm 2 over Algorithm 1 and is listed
in column 4. rtheo = r defined in (3.16) is the theoretical efficiency ratio of Algorithm
2 over Algorithm 1 and listed in column 5. The parameter σ ∗

1 , σ ∗
2 of Algorithm 1, 2

defined in lemma 3.5 are, respectively, listed in column 2, 3. The total step numbers
of Algorithm 1 and Algorithm 2 are, respectively, denoted as I1 and I2 and listed in
column 6 and column 7. The gradient norms of the optimum by Algorithm 1 and

J Glob Optim (2007) 39:221–234 233

Table 2 Extended Rosenbrock function

n σ∗
1 σ∗

2 rprac rtheo I1 I2 ‖gopt‖1 ‖gopt‖2

100 6 6 1.5000 1.7773 6 6 5.85888e−008 5.85895e−008
200 6 14 1.8333 1.6856 6 6 9.02600e−008 9.02535e−008
300 14 14 1.3500 1.5871 6 6 1.10552e−007 1.10553e−007
400 14 30 1.2340 1.5285 6 6 1.17177e−007 1.17176e−007
500 14 30 1.1932 1.4944 6 6 1.31009e−007 1.31011e−007
600 28 30 1.1931 1.4714 6 6 1.43516e−007 1.43513e−007
700 30 30 1.1667 1.4343 6 6 1.55009e−007 1.55017e−007
800 30 57 2.0430 1.4060 6 6 1.65717e−007 1.65720e−007
900 30 62 2.0190 1.3848 6 6 1.75764e−007 1.75760e−007
1,000 30 62 2.0085 1.3686 6 6 1.85280e−007 1.85263e−007

Table 3 Extended Powell singular function

n σ∗
1 σ∗

2 rprac rtheo I1 I2 ‖gopt‖1 ‖gopt‖2

100 6 6 1.2000 2.0032 18 18 7.01119e−007 7.01119e−007
200 6 14 1.3500 1.8984 18 18 9.91532e−007 9.91532e−007
300 14 14 1.1897 1.7804 19 19 3.59814e−007 3.59814e−007
400 14 30 1.3810 1.7028 19 19 4.15478e−007 4.15478e−007
500 14 30 1.3557 1.6524 19 19 4.64519e−007 4.64519e−007
600 14 30 1.3596 1.6171 19 19 5.08855e−007 5.08855e−007
700 30 30 1.1534 1.5683 19 19 5.49626e−007 5.49626e−007
800 30 62 1.1405 1.5309 19 19 5.87575e−007 5.87575e−007
900 30 62 1.1228 1.5017 19 19 6.23217e−007 6.23217e−007
1,000 30 62 1.1146 1.4786 19 19 6.56928e−007 6.56928e−007

Table 4 Penalty function 1

n σ∗
1 σ∗

2 rprac rtheo I1 I2 ‖gopt‖1 ‖gopt‖2

100 6 6 1.6250 1.8979 32 32 1.67817e−009 1.67817e−009
200 14 14 1.4737 1.7968 33 33 2.30255e−008 2.30255e−008
300 14 14 1.3302 1.6872 34 34 7.25541e−009 7.25541e−009
400 14 30 1.5077 1.6181 35 35 1.52741e−007 1.52741e−007
500 14 30 1.3046 1.5752 35 36 9.97291e−008 9.97291e−008
600 14 30 1.3117 1.5463 36 36 7.83579e−007 7.83579e−007
700 30 30 1.2014 1.5025 37 37 1.76759e−007 1.76759e−007
800 30 62 1.3094 1.4695 37 38 7.61998e−010 7.61999e−010
900 30 62 1.3083 1.4441 38 38 1.72922e−009 1.72922e−009
1,000 30 62 1.3078 1.4243 39 39 5.04016e−011 5.04015e−011

Table 5 Variably dimensioned function

n σ∗
1 σ∗

2 rprac rtheo I1 I2 ‖gopt‖1 ‖gopt‖2

100 6 6 1.5000 1.8979 25 25 0.00000e+000 0.00000e+000
200 6 14 1.6061 1.7968 28 28 0.00000e+000 4.08724e−010
300 14 14 1.4804 1.6872 30 30 0.00000e+000 0.00000e+000
400 14 30 1.6019 1.6181 32 32 1.57208e−010 0.00000e+000
500 14 30 1.7760 1.5752 35 33 3.95346e−007 0.00000e+000

234 J Glob Optim (2007) 39:221–234

Algorithm 2 are, respectively, denoted as ‖gopt‖1 and ‖gopt‖2 and listed in column 8
and column 9.

From above tables, we see that all of the values of rprac are greater than 1.1. This
shows that Algorithm 2 is more efficient than Algorithm 1 significantly. In many cases,
rprac ≈ rtheo. That is, the experimental results basically support our theoretical results.

5 Conclusions

In this paper, using efficiently automatic differentiation, a new inexact Newton algo-
rithm (Algorithm 2) is established by improving Algorithm 1 in Ref. [4], in which the
preconditioned conjugate gradient method is applied to solve the Newton equations.
Based on the efficiency coefficient defined by Brent in Ref. [2], a efficiency ratio of
Algorithm 2 to Algorithm 1 is introduced in Definition 3.2. This ratio is a function of
n (the dimension) and Qf (the cost to evaluate f (x)). Theorem 3.7 implies that the
theoretical ratio of Algorithm 2 is larger than 1, that is, Algorithm 2 is always more
efficient than Algorithm 1. Moreover, some typical values of the theoretical ratio are
calculated and listed in Table 1. It shows that the improvement is significant at least
for some cases. The validity of the theoretical ratios is supported by the practical ratios
obtained by our numerical experiments, see Tables 2–5.

Acknowledgements The work was supported by the Key National Nature Science Foundation
(Grant No.10631070) and the Mathematics and Physics Foundation of Beijing University of Technol-
ogy (Grant No.Kz0603200381).

References

1. Bartholomew-Biggs, M., Brown, S., Christianson, B., Dixon, L.C.W.: Automatic differentiation of
algorithms. J. Comput. Appl. Math. 12, 171–190 (2000)

2. Brent, R.: Some efficient algorithms for solving systems of nonlinear equation. SIAM J. on Numer-
ical Analy. 10, 327–344 (1973)

3. Bucker, H.M., Corliss, G., Hovland, P., Naumann, U., Norris, B. (eds.): Automatic differentia-
tion: Applications, Theory, and Tools. Lecture Notes in Computational Science and Engineering.
Springer,Berlin Heldelberg New York (2005)

4. Deng, N., Xue, Y., Zhang, J.: An inexact Newton method derived from efficiency analysis. J. Glob.
Optom. 31(2), 287–315 (2005)

5. Griewank, A.: Evaluating Derivatives Principles and Techniques of Algorithmic Differentiation.
Frontiers in Applied Mathematics 19. SIAM, Philadephia (2000)

6. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans.
Math. Softw. 7, 17–41 (1981)

7. Steihaug, T.: The conjugate gradient method and trust region in large scale optimization. SIAM J.
Numerical Anal. 20, 626–637 (1983)

8. Toint, P.L. : Towards an Efficient Sparsity Exploiting Newton Method for Minimization. In: Duff,
I.S. (ed.) Sparse Matrices and Their Uses, pp. 57–88. Academic Press, London, UK (1981)

	An improved inexact Newton method
	Abstract
	Introduction
	The improved inexact Newton algorithm
	Automatic differentiation (AD)
	Algorithm 1 (The CF-PCG Algorithm in Ref. [4])
	 Algorithm 2
	The efficiency analysis of algorithm 2
	Numerical experiments
	Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

